EHP Heat Pipes on CAS500

Source: https://www.kari.re.kr/eng/sub03_02_03.do#link

KARI is developing the CAS500-1 system, to meet the public needs for satellite images efficiently, to expand the domestic satellite industrial base, to cultivate related industry, and to promote satellite exports.

CAS500 satellite

CAS500 series will adopt the medium-sized standard platform which will be developed for the CAS500-1 system. It will save the time and cost for the development considerably. And domestically developed payloads, such as electro-optical cameras, microwave probes and hyper-spectral imager will be installed on the standard platform.

CAS500 program is divided into phase I and phase II. In phase I, 500kg class standard platform will be developed. And two 0.5m resolution electro-optical satellites (CAS500-1 and CAS500-2) will be developed by using that platform.

While developing the CAS500-1 system, KARI will transfer the satellite technologies accumulated over the years to the domestic industry and the CAS500-2 whose specification is identical to that of CAS500-1, will be developed by domestic industry.

The CAS500-1 will be launched in 2019 and CAS500-2 in 2020.

The CAS500 can be easily commercialized as it can be developed in a relatively short period of time at a low cost compared to medium to large sized commercial satellite. In addition to that, by developing multiple satellites in a short time and operating them simultaneously, it will help satisfy various public needs for earth observation and reduce the observation interval.

EHP has been selected by i3system, Inc. (http://www.i3system.com/eng/index.html) to provide the heat pipes (AG060) for the thermal regulation of the Focal Plane Assembly (FPA).

Focal Plan Assembly (FPA) with EHP AG060 heat pipes

Very High Throughput Satellite Ready to Pump Heat

Source : http://www.esa.int/Our_Activities/Telecommunications_Integrated_Applications/Very_High_Throughput_Satellite_ready_to_pump_heat

Thales Alenia Space has delivered the first Spacebus Neo payload module structure, including the first ever Mechanically Pumped Loop (MPL) to be mounted on a telecommunication satellite designed for 15 years of in-orbit service. It will be flown on the SES-17 satellite that is due to start service operations in 2021.

Telecommunication satellites generate substantial amounts of heat that need to be harvested from the payload and spread over large radiators, where it dissipates into cold space. Conventionally, the hottest units are placed right onto the radiators. This relatively simple scheme reaches its limits when the payload becomes more demanding, as is the case for recent Very High Throughput Satellite (VHTS) missions proposed by several satellite operators.

The MPL is made of a network of pipes and a mechanical pump, which circulates a refrigerant fluid to collect heat wherever it is created and transport it to the radiators. This makes it possible to maximise use of the available surface inside the satellite, to accommodate the repeaters required for large VHTS missions.

MPL-based thermal control opens a completely new way to design, manufacture and test high-capacity, digitally processed telecommunication satellites.

Thales Alenia Space, France, developed the thermal control of Spacebus Neo satellites under ESA’s programme of Advanced Research in Telecommunications Systems Neosat Partnership Project and the French PIA (“Programme d’Investissement d’Avenir”).

The Partnership Project has helped to derisk partners’ investment by developing this disruptive technology and thereby achieve a competitive leap forward in the highly dynamic VHTS satellite market. This was achieved thanks to the combined expertise and excellent collaboration of Thales Alenia Space, ESA, the French Space Agency CNES and SES, the customer of the SES-17 satellite. 

Spacebus Neo module with its novel thermal control system.

EHP contributes to this development as the provider of new generation of heat exchanger.

CSO Launch with EHP LHP² based Thermal Bus

Arianespace conducted its final launch of 2018 on Wednesday, following a scrub – due to strong winds at the launch site – on Tuesday. The launch used a Soyuz rocket to deploy a high-resolution imaging satellite for the French military. Soyuz lifted off from the Centre Spatial Guyanais – near Kourou, French Guiana.

Wednesday launch deployed CSO-1, the first of three satellites that will form the Composante Spatiale Optique (CSO), or Optical Space Component. These spacecraft will serve the French military, replacing the earlier Helios reconnaissance satellites. To develop the constellation, France’s Direction Générale de l’Armement (DGA – Directorate General of Armaments) has entered into a partnership with the national space agency, CNES.

Airbus Defence and Space is the prime contractor for the three CSO satellites, which are based around its AstroSat-1000 platform. Each satellite has a mass of 3,565 kilograms (7,859 pounds) and is expected to operate for at least ten years. The imaging systems were produced by Thales Alenia Space. From sun-synchronous orbit at an altitude of about 800 kilometers (497 miles, 432 nautical miles), CSO-1 is expected to be able to image the Earth at resolutions of about 35 centimeters (14 inches).

CSO-1 is the first satellite in France’s third generation of reconnaissance satellites, following on from two pairs of Helios spacecraft.

On board CSO-1, three complete thermal bus using EHP macro loop heat pipe (LHP²)  which will permit the instrument to function in its optimal performance.

Source : https://www.nasaspaceflight.com/2018/12/arianespace-soyuz-st-cso-1-launch/

SES-12 launch

SES-12 equipped with two P-DPS made in EHP was successfully launched to a Geostationary Transfer Orbit (GTO) on Monday, June 4, 2018 from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida.

Liftoff occurred at 12:45 a.m. EDT. The SES-12 satellite was deployed about 32 minutes after liftoff.

The DPS arms are clearly visible throughout the live launch stream.